
PHYSICAL REVIEW E, VOLUME 64, 036202
Periodic metastable structures in the discretew4 model

S. V. Dmitriev,* H. Jimbo, K. Abe, and T. Shigenari
Department of Applied Physics and Chemistry, University of Electro-Communications, Chofu-shi, Tokyo 182-8585, Japan
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For the discretew4 model a class of metastable periodic solutions is given in the form of Fourier series.
From the symmetry consideration, we eliminate the harmonics with zero amplitudes and thus, reduce the
number of degrees of freedom. For the rest of harmonics we establish the hierarchy of their significance. For
solutions with a small period we give the exact expression of energy density in terms of amplitudes of
harmonics. Conditions of existence and stability of the solutions are discussed. For some limiting cases the
approximate solutions of different kinds are given. The analytical results are compared with the results of
numerical study. We also discuss a mechanism of transition from a metastable periodic structure into the
ground state and apply the results to the lock-in transition in dielectric crystals supporting incommensurate
phase.
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I. INTRODUCTION

Recently there has been growing interest in incommen
rate phases in dielectric crystals@1,2#. The incommensurate
phase usually appears on cooling as a result of second-o
phase transition from a high-symmetry phase. Just below
transition point the modulation has sinusoidal form. On f
ther cooling the amplitude of modulation increases, theref
the role of anharmonicity also increases and the sinuso
modulation gradually transforms into a low-symmetry co
mensurate phase with periodically arranged domain wa
As a rule, on cooling down below the domain wall regim
there is another phase transition, of the first order, at wh
the modulation disappears from the low-symmetry comm
surate phase~lock-in transition!. The phenomenologica
theory of the lock-in transition has been developed@3# but
the microscopic features of this transition are not clear.

We have reported one possible mechanism of lock-in tr
sition @4# according to which the transition occurs in th
domain wall subsystem. Above the transition point, the
main walls are mutually repulsive that is why they a
equally spaced. Below the transition point domain walls
come mutually attractive, their equidistant arrangement
comes unstable and they start to move, collide, and ann
late by pairs. Each domain wall carries some energy tha
why their annihilation is a phase transition of the first ord
However, there are some crystals, for example, NaN2,
where the modulation keeps the sinusoidal form until
lock-in transition@5#. In this case the mechanism describ
above cannot work.

In the present study, in frame of thew4 model, we con-
sider the modulated phases near the lock-in transition.
well known, that thew4 model does not show the effect o
modulational instability due to the absence of the seco
neighbor interactions@6#. However, modulated phases wi
sufficiently large amplitude of displacements can be sta
or, more precisely, metastable. We estimate the stability l

*Permanent address: General Physics Dept., Altai State Tech
University, 46 Lenin St., 656099 Barnaul, Russia.
1063-651X/2001/64~3!/036202~9!/$20.00 64 0362
u-

der
he
-
re
al
-
s.
,
h
-

-

-

-
e-
i-
is
.

e

is

-

le
-

its for the metastable periodic structures and consider
transition from metastable state into the ground state as
other possible mechanism of the lock-in transition, whi
can work for the case of NaNO2 as well. We also show tha
the presence of imperfections like domain walls can red
the range of stability of the metastable phase.

There exists a vast literature on the discretew4 and
Frenkel-Kontorova~FK! @7# models@8–14#. The periodic so-
lutions to these models can be found by, for example, m
technique@13,14#.

Thew4 model with the next-nearest interactions, rewritt
in several mathematically equivalent forms, like the discr
frustratedw4 ~DIFFOUR! model and the elastically-hinge
molecule~EHM! model, has been used in the incommens
rate phase studies@4,6,15–21#. Analytic expressions for
some periodic metastable solutions were given, e.g., by
ssen and Tjon@16# and by Ishibashi@17#. An approximate
seven-periodic solution has been given by Hlinka, Oriha
and Ishibashi@19#.

In the present paper we give a class of periodic soluti
to thew4 model. This class is a subset of all possible perio
solutions, but it contains all the solutions that can appear
result of modulational instability in thew4 model with the
next-nearest interaction.

The Hamiltonian of thew4 and FK models can be written
in the form

H5(
n

F1

2
u̇n

21
C

2
~un112un!21VnG , ~1!

where un is the displacement of thenth particle. The first
term in the right-hand side of Eq.~1! is the kinetic energy of
nth particle, the second term gives the energy of the ela
bond betweennth and (n11)th particles. The bond has th
unit length and the elastic constantC. The third term is the
energy ofnth particle due to the on-site potential, which
often taken in one of the two following forms:

Vn5
1

4
~12un

2!2 for w4, ~2!cal
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Vn512cos~un!, for FK. ~3!

The equations of motion corresponding to Eq.~1! are

ün2C~un2122un1un11!1Vn850. ~4!

We consider, as the starting point, the two elastica
bound particles placed into the potentialV(u)5 1

4 (12u2)2

as is shown in Fig. 1. In~a! and ~b!, the equilibrium states
are presented for the cases of a strong and a weak el
bond, respectively. It is easily seen that the equilibrium in~a!
is unstable. Indeed, let us consider a small displacemen
both particles, say, to the right and assume, for the sak
simplicity, that the length of the bond does not change. Th
the increase of the potential energy for the left particle w
be smaller than the decrease of the energy for the right
ticle, so the total energy will decrease. However, in~b!, the
equilibrium is stable because a similar displacement of
particles causes an increase of the potential energy.
simple consideration suggests that, for bonds weak eno
the metastable structures can exist in thew4 model. The par-
ticles in a stable configuration are below the inflection po
of the potential which is atu561/A3.

The paper is organized as follows. In Sec. II, a class of
periodic solutions to thew4 model is described. The solu
tions are divided into four groups with the periods 2, 4l ,
4l 12, and 2l 11, wherel is a positive integer. In Secs. II
and IV, we give some exact and approximate analytical
lutions, respectively. In Sec. IV D, we apply the obtain
results to the discussion of the lock-in transition. In Sec.
the existence and stability of the solutions are discussed
Sec. VI, which concludes the paper, we briefly discuss
FK model.

FIG. 1. The two elastically bound particles in the double-w
potential. ~a! A case of a strong elastic bond. Equilibrium is u
stable.~b! For a weak elastic bond, when particles are below
inflection point of the potential, equilibrium is stable.
03620
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II. PERIODIC SOLUTIONS

Obviously, Eq.~4! with the w4 on-site potential Eq.~2!
has the unstable trivial solution,un50, and the two stable
solutions,un561. Besides, the model admits the stability
the N-periodic structures (un5un1N) given below.

We study the structures with a rational wave number

k5
M

N
, 2M<N, ~5!

whereM andN are coprime positive integers.
A two-periodic structure (N52, k51/2) is given by

un5A cos@2pk~n1m!#56~21!nA. ~6!

Other even-periodic structures are divided into two subs
one with the periodN54l ( l is a positive integer!

un5(
j 51

N/4

Aj cosF ~2 j 21!H 2pk~n1m!1
p

NJ G , ~7!

and another one with the periodN54l 12

un5 (
j 51

(N/211)/2

Aj cos@2pk~2 j 21!~n1m!#. ~8!

Odd-periodic structures withN52l 11 can be written as

un56A(N11)/26 (
j 51

(N21)/2

Aj cos@2pk~2 j 21!~n1m!#.

~9!

In Eqs. ~6!–~9!, m can take any value from the setm
5$0,1, . . . ,N21% and amplitudesAj are the unknown func-
tions of the parameterC.

Equations~6!, ~7!, and ~8! each describeN different do-
mains ofN-periodic structure, each domain being defined
m. Equation ~9! describes 2N different domains of
N-periodic structure with an oddN, each domain being de
fined bym and by a specific choice of the sign.

The way of numbering of the harmonics in Eqs.~7!–~9!
differs from the conventional way of numbering of the Fo
rier harmonics. The advantage of the numbering used he
that uA1u.uA2u. . . . . The Fourier representation for the p
riodic structures given above takes into account the sym
try of the structures and thus, reduces the number of deg
of freedom.

Even-periodic structures Eqs.~6!–~8! have concentration
1/2 ~fraction of particles lying in, say, left well of the on-sit
potential!. An odd-periodic structure Eq.~9! with period N
has concentration (N21)/2N that approaches 1/2 with in
crease inN.

As it is well known, thew4 model withC→0 supports an
infinite number of structures, periodic and chaotic. For
small C the periodic structures with concentrations differe
from 1/2 are possible. For example, one can easily imag
the 1/(N21) concentration structure with all particles, e
cept eachNth particle, lying in the same well of the on-sit
potential. Thus, the solutions Eqs.~6!–~9! do not give an

l

e
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exhaustive list of periodic solutions, but, as mention
above, they give an exhaustive list of solutions that can
pear as a result of modulational instability in thew4 model
with the next-nearest interaction.

To describe an arbitrary periodic structure one has to c
sider the Fourier series in a general form. For example,
an arbitrary odd-periodic structure, Eq.~9! can be written in
the form

un56A(N11)/26 (
j 51

(N21)/2

Aj cos@2pk~2 j 21!~n1m!1w j #,

~10!

where the (N11)/2 amplitudesAj and (N21)/2 phasesw j
are theN parameters of the Fourier decomposition. In t
present paper we restrict ourselves by the structures
w j50 so it is important to demonstrate that energy of
structure always has a local minimum at allw j50. To prove
it, we substitute Eq.~10! into the Hamiltonian Eq.~1! with
the on-site potential Eq.~2! and average the energy over o
period (N particles!. It turns out that the energy contribution
from the harmonic terms((un112un)2 and(un

2 do not de-
pend on the phasew j . The phase-sensitive term is the anh
monic term(un

4 . This term has a local extremum atw j50
because it is an even function ofw j . It is not difficult to
show that the extremum is a local minimum. For the ev
periodic structures the analysis is similar.

III. EXACT SOLUTIONS

In this and in the two following sections we consider t
w4 model.

A. Two-periodic structure

Substituting Eq.~6! into Eq. ~1! one can express the en
ergy density of the two-periodic structure as

U252CA21
1

4
~12A2!2. ~11!

From the conditiondU2 /dA50 the following nontrivial so-
lution for amplitude can be found

A25124C, ~12!

and hence,U252C24C2. The solution exists forC<1/4
and it is stable forC,1/6. At C51/6, the absolute value o
displacementuunu5A51/A3, which is the abscissa of th
inflection point of the double well potential.

B. Structures with period 4l

For the displacementsun given by Eq.~7! we calculate
the terms of the Hamiltonian Eq.~1! averaged within one
period

1

N (
n51

N

un
25

1

2 (
j 51

N/4

Aj
2 , ~13!
03620
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N (
n51

N

~un112un!25(
j 51

N/4

Aj
2$12cos@~2 j 21!2pk#%.

~14!

The averaged anharmonic term of Eq.~1! for a givenN
can be written in the form

1

N (
n51

N

un
45XN , ~15!

whereXN is a function of the amplitudesAj . Let us write the
function XN in an explicit form forN54,8,12:

X45
1

4
A1

4 , ~16!

X85
3

8
~A1

21A2
2!21

1

2
~A1

3A22A1A2
3!, ~17!

X125
3

8
~A1

21A3
2!21

1

4
A2

4

1
3

2
~A1

2A2
21A2

2A3
21A1

2A2A32A1A2A3
2!

1
1

2
~A1

3A22A2A3
3!. ~18!

Note that the anharmonic term is not a function ofM. This
means that it is same for different structures with the sa
period, for example, it is same for eight-periodic structu
with k51/8 andk53/8. This will be also true for the anhar
monic terms of structures with periods 4l 12 and 2l 11.

Particularly, for the four-periodic structure (M51,N54)
the energy density, in view of Eqs.~13!–~16!, has the form

U45
C

2
A1

21
1

4 S 12
1

2
A1

2D 2

. ~19!

The minimum energy condition is satisfied at

A1
25224C, ~20!

which is possible forC<1/2. In view of Eq.~20!, the energy
density of the four-periodic structure can be written asU4
5C2C2. The four-periodic structure is stable whenC
,1/3. At C51/3, the absolute value of the displacement
equal touunu51/A3, which is the abscissa of the inflectio
point of the double well potential.

C. Structures with period 4l¿2

For the displacementsun given by Eq.~8! we calculate
the terms of the Hamiltonian Eq.~1! averaged within one
period

1

N (
n51

N

un
25A(N/211)/2

2 1
1

2 (
j 51

(N/221)/2

Aj
2 , ~21!
2-3
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1

N (
n51

N

~un112un!2

54A(N/211)/2
2 1 (

j 51

(N/221)/2

Aj
2$12cos@~2 j 21!2pk#%,

~22!

1

N (
n51

N

un
45XN , ~23!

whereXN is a function of the amplitudesAj . Particularly, for
N56,10,14,

X65
3

8
A1

41A2
41A1

3A213A1
2A2

2 , ~24!

X105
3

8
~A1

41A2
4!1A3

41
3

2
A1

2A2
21

1

2
~A1

3A21A1A2
3!

13A3
2~A1

21A2
2!13A3~A1

2A21A1A2
2!, ~25!

X145
3

8
~A1

41A2
41A3

4!1A4
41

3

2
~A1

2A2
21A1

2A3
21A2

2A3
2!

1
1

2
~A1

3A21A1A3
31A2

3A3!

1
3

2
~A1

2A2A31A1A2
2A31A1A2A3

2!

13A4~A1A2
21A1

2A31A2A3
212A1A2A3!

13A4
2~A1

21A2
21A3

2!. ~26!

In view of Eqs.~21!–~24!, the energy density of the six
periodic structure (M51, N56) is

U65
1

4
1

C

4
~A1

218A2
2!2

1

4
A1

22
1

2
A2

2

1
1

4 S 3

8
A1

41A2
41A1

3A213A1
2A2

2D . ~27!

The minimum energy conditions are satisfied at

A15gA2 , A2
25

4~12C!

3g216g112
, ~28!

whereg,21 is a real root of

~12C!g313~112C!g226~124C!g24~2211C!50.
~29!

From Eq.~28! it follows that the six-periodic solution doe
not exist forC.1.
03620
D. Structures with period 2l¿1

For the displacementsun given by Eq.~9! we calculate
the terms of the Hamiltonian Eq.~1! averaged within one
period

1

N (
n51

N

un
25A(N11)/2

2 1
1

2 (
j 51

(N21)/2

Aj
2 , ~30!

1

N (
n51

N

~un112un!25 (
j 51

(N11)/2

Aj
2$12cos@~2 j 21!2pk#%,

~31!

1

N (
n51

N

un
45XN , ~32!

with

X35X6 , X55X10, X75X14, ~33!

whereX6 ,X10,X14 are given by Eqs.~24!–~26!. Note that the
averaged termsun

2 andun
4 for the (2l 11)-periodic structure

coincide with that for the (4l 12)-periodic structure. This is
not surprising because these structures can be obtained
from another by changing the sign of displacements for e
odd ~or even! node@17#.

Density of potential energy of the three-periodic structu
(M51, N53) is

U35
1

4
1S 3C

4
2

1

4DA1
22

1

2
A2

2

1
1

4 S 3

8
A1

41A2
41A1

3A213A1
2A2

2D . ~34!

The energy has minimum at

A15gA2 , A2
25

4212C

3g216g112
, ~35!

whereg,21 is a real root of

~123C!g313~126C!g226g24~213C!50. ~36!

It can be seen from Eq.~35! that the three-periodic structur
does not exist forC.1/3. Actually, the solution exists fo
C,C* , whereC* '0.135 is such that the discriminant o
the cubic Eq.~36! equals to zero and the two real roo
merge together.

IV. APPROXIMATE SOLUTIONS

A. Limit of C\0

At C→0 the displacements of particlesun→61 and the
amplitudes of harmonics in Eqs.~6!–~9! approach the values
Aj

0 given below.
For the two-periodic structure

A051. ~37!
2-4
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For the even-periodic structures with the periodN54l ( l
is a positive integer!

Aj
05~21! j

4

N
A11Sj

2, j 51, . . . ,N/4, ~38!

where

Sj5 (
k51

N/2

sinF ~2 j 21!2pk

N G . ~39!

For the even-periodic structures with the periodN54l
12

Aj
05~21! jr j

4

N
A11Sj

2, j 51, . . . ,~N/211!/2, ~40!

whereSj is given by Eq.~39! and

r j51 for j Þ~N/211!/2,
~41!

r j5
1

2
for j 5~N/211!/2.

For the odd-periodic structures withN52l 11 the ampli-
tudes are

Aj
05~21! jr j

4

N
A1

4
1Sj

2, j 51, . . . ,~N11!/2, ~42!

where

Sj5 (
k51

(N21)/2

sinF ~2 j 21!2pk

N G , ~43!

and

r j51 for j Þ~N11!/2,
~44!

r j5
1

2
for j 5~N11!/2.

The amplitudesAj
0 given above can be used as a ze

approximation for the construction of the approximate so
tions at a smallC. For example, for the six-periodic structu
(k51/6), from Eq.~40! one findsA1

054/3 andA2
0521/3.

Then, for a smallC, one can find the following estimation

A154/31a1 , A2521/32a1/21a2 ,

a15
2b1Ab224ac

2a
, a25

21a1
2124a1C112a1116C

60a1148C124
,

~45!

where a533C124, b512C2142C112, c516C218C,
and we assumeda1!1 anda2!a1.

For the case of a largeC the exact solution given by Eq
~28! can be simplified assuming thatA1!1 andA2!A1. The
result reads
03620
-

A15A2
3

2
~2C21!1A11

3
C22

7

3
C1

11

12
,

~46!

A25
2A1

3

16C2416A1
2

.

In the succeeding section a similar two-harmonic approxim
tion will be given for structures with anyk exceptk50,1/2,
1/3,1/4,1/6.

In Fig. 2 we compare the exact solution for the si
periodic structure Eq.~28! with the approximate solutions
The exact result is shown by the solid lines, smallC approxi-
mation Eq.~45! is shown by the open circles and the so
circles show the small amplitude approximation Eq.~46!.
The solution does not exist forC.1, which is consistent
with Eq. ~57!. We found numerically the stability limit for
the six-periodic solution asC* 50.520. The approximate sta
bility criterion Eq. ~59! gives an estimationC* 50.567 and
Eq. ~60! givesC* 50.550.

B. Two-harmonic approximation

If the displacements are small, the higher order harmon
can be neglected in Eqs.~7!–~9!. Under the assumptionA1
!1 andA2!A1, the following two-harmonic approximation
can be easily determined

un5A1 cos~2pnk1w!1A2 cos~6pnk13w!. ~47!

Substituting Eq.~47! into the Hamiltonian Eq.~1! and aver-
aging over a period (N nodes!, gives the energy density

U5
1

4
1aA1

21bA2
21

3A1
4

32
1

A1
3A2

8
1

3A1
2A2

2

8
,

for kÞ0,
1

2
,
1

3
,
1

4
,
1

6
, ~48!

FIG. 2. Amplitudes of Fourier harmonics for the six-period
structure as a function ofC. The exact solution is shown by th
thick solid lines. SmallC approximation Eq.~45! is shown by the
open circles and the solid circles show the small amplitude appr
mation Eq.~46!. The solution does not exist forC.1. The six-
periodic solution is unstable forC.C* 50.520. The stability crite-
ria Eqs. ~59! and ~60! give the estimationsC* 50.567 andC*
50.550, respectively.
2-5
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with

a5C sin2~pk!2
1

4
, b5C sin2~3pk!2

1

4
. ~49!

The energy Eq.~48! has minimum at

A15A2
8

5
~2a1b!1

8

5
A~2a1b!22

20

3
ab,

A25
2A1

3

16b16A1
2

. ~50!

The phase of the solution Eq.~47! cannot be determined
without taking into account the higher harmonics. To ma
the approximation Eq.~47! consistent with Eqs.~7!–~9!, we
put

w5
p

N
, for N54l ,

~51!
w50, for other N.

Note that Eqs.~48!–~50! are valid for anyk exceptk
50,1/2,1/3,1/4,1/6. For these exceptional cases the exac
lutions were given in Sec. III. An approximate two-harmon
solution for the structure withk51/6 is given by Eq.~46!.

Equation~47! is accurate only for small amplitudes. How
ever, this solution will be used for rough estimations in t
numerical investigation. We will also use this solution f
discussion of the existence condition for various perio
structures.

C. Kink at a small C

Let us consider the kink, which is the transition of pa
ticles from one well of the on-site potential to another one
it is shown in Fig. 3~a!. For C small enough, one can assum
that only two particles from each side of the kink have d
placements different from61. Taking into account the sym
metry, there are two unknown displacements,u0 andu1. Un-
der the assumption 12u0!1 and 12u1!12u0, we find

u0512b1Ab22
2C

3
, u1512

C

21C
~12u0!,

~52!

whereb5(214C1C2)/(613C).
The energy of the kink is

UK5
1

2
~12u0

2!21
1

2
~12u1

2!2

1C~3u0
212u1

222u0u122u111!. ~53!

In Fig. 3~b!, the numerically obtained magnitudes foru0
and u1 ~solid lines! are compared with the approximate s
lution Eq. ~52! ~dashed lines!.
03620
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D. Domain wall in two-periodic structure—Autowaves

There are two different domains of the two-periodic stru
ture. In one domain the even nodes have positive displa
ments and in another domain so do the odd nodes. In
4~a!, the domain wall separating two domains is present
Assuming that only two particles from each side of the d
main wall have displacements different from6A, whereA is
given by Eq.~12!, and taking into account the symmetry, on
can find foru0 andu1 the following approximation:

u05A1
2b1Ab2124A2C

6A
,

~54!

u152A1
C

2210C
~u02A!,

where b5(4242C1109C2)/(2210C) and we assumed
u02A!1 and u11A!u02A. The energy of the domain
wall is

UDW5
1

2
~12u0

2!21
1

2
~12u1

2!21C~u12u0!21C~u12A!2

210CA22~12A2!2, ~55!

which is the difference between energy of the structure h
ing a domain wall and the energy of the ideal two-period
structure.

Domain wall in the two-periodic structure is stable if

3u1
212C21.0. ~56!

FIG. 3. ~a! Kink at a smallC. We assume that only two particle
from each side of the kink have displacements different from61.
~b! Numerically obtainedu0 andu1 as functions ofC are shown by
the solid lines. Approximate solution Eq.~52! is shown by the
dashed lines.
2-6
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This approximate stability criterion can be derived consid
ing the change in the energy of domain wall due to a sm
perturbation ofu0 andu1.

The results of numerical study of the domain wall a
presented in Fig. 4~b!. Numerically found displacementsu0
and u1 are plotted by the solid lines and the approxima
solution Eq.~54! is shown by the dashed lines. For the d
placementu0 curves overlap each other. Foru1 the deviation
is noticeable only at the stability limit of the domain wa
which is at CDW* 50.147. Note that the stability limit for
two-periodic structure isC2* 51/6'0.167. The line labeledS
shows the left-hand side of Eq.~56!, which is the stability
criterion for the domain wall. One can see thatSapproaches
zero whenC approachesCDW* . We also plot the energy of th
domain wallUDW . Note thatUDW is always negative there
fore, the domain wall can be viewed as a nucleus of
lowest energy phase.

The two-periodic structure with a domain wall shows
interesting behavior atC lying betweenCDW* andC2* . In this
case the two-periodic structure is stable but the domain w
is unstable. The unstable domain wall initializes the two
towaves moving in the opposite directions and transform
the two-periodic structure into the ground stateun51. This
process is presented in Fig. 5 atC50.15. For this simulation,
we added the dissipative term with the coefficient equa
unity to the equation of motion Eq.~4!. In spite of the dissi-
pation, the autowaves move with a constant velocity. T

FIG. 4. ~a! The domain wall in the two-periodic structure. W
assume that only two particles from each side of the domain w
have displacements different from6A. ~b! Numerically found dis-
placementsu0 andu1 are plotted by the solid lines and the approx
mate solution Eq.~54! is shown by the dashed lines. For the d
placementu0 curves overlap each other. Foru1 the deviation is
noticeable only at the stability limit of the domain wall, which is
CDW* 50.147. The stability limit for two-periodic structure isC2*
51/6'0.167. LineSshows the left-hand side of Eq.~56!, which is
the stability criterion for the domain wall.UDW is the energy of the
domain wall.
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driving force for this motion comes from the energy deli
ered in the structure transformation.

In the above example, the transformation of the tw
periodic structure into the ground state was studied. Ho
ever, the same effect can be observed for other metast
periodic structures. Domain walls in any structure, except
two-periodic one, are of two types. One type of domain w
is formed by removal of a node of the chain and another t
is formed by adding of a node. The critical conditions for t
domain walls of different types are different.

In our opinion, the loss of stability by a modulated met
stable structure described above and illustrated in Fig. 5,
be regarded as a mechanism of the lock-in transition.
contrast to the mechanism described in@4#, the mechanism
proposed here can work for the case of NaNO2 as well.

V. EXISTENCE AND STABILITY

Let us determine the existence region for a structure w
any k. At the existence limit, the displacements are nea
zero and even single-harmonic approximation is valid. P
ting A250 in Eq. ~48!, one finds that the energy has min
mum atA154A2a/3, which is correct for anyk exceptk
50,1/2,1/4. Thus, the solution with the wave numberk ex-
ists whena,0, or

C,
1

4 sin2~pk!
. ~57!

In spite of the fact that the estimation forA1 is not valid for
k50,1/2,1/4, Eq.~57! is correct even for these exception
cases.

ll

FIG. 5. The unstable domain wall initializes the two autowav
moving in the opposite directions and transforming the two-perio
structure into the ground stateun51 (C50.15). We introduced a
strong dissipation in the system. In spite of the dissipation,
autowaves move with a constant velocity. The driving force for t
motion comes from the energy delivered in the structure trans
mation.
2-7



l

.
o

ua

b

i

ba

nt
m
r

he

-

e
th

K
ive

ry
r-
can
w-

he

e-
ing

um
u-
d,

he
ith
ed

res
the

a

ete
le,

sed.
of

, by

re
en
w-

is-
oci-

S. V. DMITRIEV, H. JIMBO, K. ABE, AND T. SHIGENARI PHYSICAL REVIEW E64 036202
Equation~57! suggests that the structures with a smalk
exist in a wide range of parameterC, while the short periodic
structures exist only in a highly discrete chain~small C).

Let un
0 be a knownN-periodic equilibrium solution to Eq

~4!. To examine it for stability one can study the time ev
lution of a small perturbationun(t)5un

01«n(t). The solution
un

0 is stable if the dispersion relation of the linearized eq
tion of motion for the function«n(t) has no imaginary fre-
quencies. However, this approach allows to check for sta
ity only the simplest structures.

To simplify the problem, let us assume that perturbation
a constant. Substitutingun5un

01« into the Hamiltonian Eq.
~1!, we calculate the variation of energy due to the pertur
tion and average the energy over one period (N nodes!

DU5
«

2N (
n51

N

@3«~un
0!22«12~un

0!22un
0#, ~58!

where we omitted the higher order terms in«. The stability
condition isd2(DU)/d«2.0. However, assuming a consta
perturbation we overestimated the stability of the syste
Thus, we can claim that a structure with the wave numbek
cannot be stable if

1

N (
n51

N

~un
0!2,

1

3
. ~59!

Obviously, the found stability condition is accurate for t
structures withk51/2 and 1/4.

The stability criterion Eq.~59! suggests that the displace
ments in a stable structure are large.

A more precise stability criterion can be obtained und
the assumption that the perturbation is proportional to
shape of the on-site potentialun5un

01@12(un
0)2#2«. Similar

calculations show that the structure cannot be stable if

1

N (
n51

N

†C~Vn11
0 2Vn

0!21~Vn
0!2@3~un

0!221#‡,0, ~60!

where Vn
05@12(un

0)2#2. This criterion is accurate for the
structures withk51/2, 1/3, and 1/4.

VI. CONCLUSION

In the present paper thew4 model was discussed. The F
model also supports the periodic metastable solutions g
s

s.
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by Eqs. ~6!–~9!. The properties of the solutions are ve
similar for both of these models. The only important diffe
ence between them is that in the FK model the particles
occupy more than two wells of the on-site potential. Ho
ever, here we will not discuss this general case.

The curvature of the FK on-site potential at the top of t
potential barrier coincides with that for thew4 potential. That
is why the existence condition Eq.~57! is true for either
model.

Let un
01p is a periodic equilibrium solution to the FK

model. The shift byp means that we consider the displac
ments with respect to the top of the potential. Consider
the perturbation in the form of a constant,un5un

01p1«,
we find that the solution cannot be stable if

1

N (
n51

N

cos~un
0!.0. ~61!

Thus, we have described a class of periodic equilibri
solutions to thew4 and FK models. They are also the sol
tions to thew4 model with the next-nearest interactions an
sequentially, to the DIFFOUR and EHM models. In thew4

model the amplitude of a stable solution is large, while in t
w4 model with the next-nearest interaction the solutions w
vanishingly small amplitude can be stable. The describ
class of solutions is an exhaustive list of periodic structu
that can appear as a result of modulational instability in
w4 model with the next-nearest interaction.

The solutions with a small wave number are stable in
wide range of the parameterC, while the solutions with a
large wave number can be stable only in a highly discr
chains ~small C). The described solutions are metastab
except for the case ofC50. A mechanism of transformation
of a metastable structure into a ground state was discus
The transformation occurs by means of motion of a pair
autowaves. The autowaves can be initialized, for instance
an unstable domain wall.

The effect of instability of a metastable periodic structu
gives a qualitative description of the lock-in transition wh
modulated phase in a dielectric crystal transforms to a lo
symmetry commensurate phase.
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