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Periodic metastable structures in the discretep* model
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For the discretap* model a class of metastable periodic solutions is given in the form of Fourier series.
From the symmetry consideration, we eliminate the harmonics with zero amplitudes and thus, reduce the
number of degrees of freedom. For the rest of harmonics we establish the hierarchy of their significance. For
solutions with a small period we give the exact expression of energy density in terms of amplitudes of
harmonics. Conditions of existence and stability of the solutions are discussed. For some limiting cases the
approximate solutions of different kinds are given. The analytical results are compared with the results of
numerical study. We also discuss a mechanism of transition from a metastable periodic structure into the
ground state and apply the results to the lock-in transition in dielectric crystals supporting incommensurate
phase.
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[. INTRODUCTION its for the metastable periodic structures and consider the
transition from metastable state into the ground state as an-
Recently there has been growing interest in incommensuether possible mechanism of the lock-in transition, which
rate phases in dielectric crystdls,2]. The incommensurate can work for the case of NaNCas well. We also show that
phase usually appears on cooling as a result of second-ordéte presence of imperfections like domain walls can reduce
phase transition from a high-symmetry phase. Just below thé€e range of stability of the metastable phase.
transition point the modulation has sinusoidal form. On fur- There exists a vast literature on the discreté and
ther cooling the amplitude of modulation increases, therefor 'enkel-KontorovdFK) [7] models[8—14]. The periodic so-
the role of anharmonicity also increases and the sinusoiddytions to these models can be found by, for example, map
modulation gradually transforms into a low-symmetry com-teCh”'quf[Bvl‘H- _ _ _ ,
mensurate phase with periodically arranged domain walls. The¢” model with the next-nearest interactions, rewritten
As a rule, on cooling down below the domain wall regime, " several Tathematlcally equivalent forms, I|I§e the (_jlscrete
there is another phase transition, of the first order, at whicfifustratede® (DIFFOUR) model and the elastically-hinged
the modulation disappears from the low-symmetry commenMolecule(EHM) model, has been used in the incommensu-
surate phaselock-in transition. The phenomenological 'até phase studiep4,6,15-21. Analytic expressions for
theory of the lock-in transition has been developafibut ~ SOme perlomc metastable soll_Jtlons were given, e.g., by Jan-
the microscopic features of this transition are not clear. ~ SSen and Tjor16] and by Ishibash[17]. An approximate
We have reported one possible mechanism of lock-in transeven-perlodm solution has been given by Hlinka, Orihara,
sition [4] according to which the transition occurs in the @nd Ishibash[19].

domain wall subsystem. Above the transition point, the do- !N the present paper we give a class of periodic solutions
main walls are mutually repulsive that is why they aret0 the* model. This class is a subset of all possible periodic

equally spaced. Below the transition point domain walls be-Solutions, but it contains all the solutions that can appear as a
come mutually attractive, their equidistant arrangement bet€sult of modulational instability in the™ model with the
comes unstable and they start to move, collide, and annihfeXt-nearest interaction. .

late by pairs. Each domain wall carries some energy that is 1he Hamiltonian of thep* and FK models can be written
why their annihilation is a phase transition of the first order.in the form
However, there are some crystals, for example, NagNO

where the modulation keeps the sinusoidal form until the

lock-in transition[5]. In this case the mechanism described

above cannot work.

_In the present study, in frame of the’ model, we con-  \ pere u, is the displacement of theth particle. The first
sider the modulated phases near the lock-in transition. It i$srm in the right-hand side of E€Q) is the kinetic energy of
4
well known, that thep™ model does not show the effect of i particle, the second term gives the energy of the elastic
modulational instability due to the absence of the secondg .4 petweemth and 0+ 1)th particles. The bond has the
neighbor interaction$6]. However, modulated phases with it jength and the elastic constadt The third term is the

sufficiently large amplitude of displacements can be stabl@,q 4 ofnth particle due to the on-site potential, which is
or, more precisely, metastable. We estimate the stability “mbften taken in one of the two following forms:

1., C
H=2 | SUi+ 5 (Uneq=Ug) >+ Vy), (D)
n
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0.5 T , . ; . Il. PERIODIC SOLUTIONS

Obviously, Eq.(4) with the ¢* on-site potential Eq(2)
has the unstable trivial solutiom,,=0, and the two stable
solutions,u,= = 1. Besides, the model admits the stability of
the N-periodic structuresu,=u, ) given below.

We study the structures with a rational wave number

M 2M=N 5
k=N <N, )
0':_ ' ' ‘ whereM andN are coprime positive integers.
0.4- A two-periodic structure =2, k=1/2) is given by
O u,=Acog 2mk(n+m)]==(—1)"A. (6)

Other even-periodic structures are divided into two subsets,
one with the periodN=4I (I is a positive integer

N/4

U T
un=§ A cos{(Zj —1)[277K(n+m)+ N
=1

T -1/:«/5 0
u (D

FIG. 1. The two elastically bound particles in the double-well
potential. (a) A case of a strong elastic bond. Equilibrium is un- and another one with the peridd= 4l +2
stable.(b) For a weak elastic bond, when particles are below the

inflection point of the potential, equilibrium is stable. (N/2+1)/2

Uy,= 21 A co§ 2k (2j—1)(n+m)]. (8)
=

V,=1-coqu,), forFK. (3
Odd-periodic structures witN=21+1 can be written as
The equations of motion corresponding to Ef). are (N=1)/2
) Up=Ans1pt 2 A cog2mk(2j—1)(n+m)].
Un—C(Upy_1—2Up+Ups 1)+ V) =0. (4 =1 ©
We consider, as the starting point, the two elastically In Egs. (6)—(9), m can take any value from the sat
bound particles placed into the potenti&{u)=3(1—u?)? ={0,1, ... N—1} and amplitude#\; are the unknown func-

as is shown in Fig. 1. Irfa) and (b), the equilibrium states tions of the parameteC.
are presented for the cases of a strong and a weak elastic Equations(6), (7), and (8) each describé\ different do-
bond, respectively. It is easily seen that the equilibriurteln  mains ofN-periodic structure, each domain being defined by
is unstable. Indeed, let us consider a small displacement ofi. Equation (9) describes R different domains of
both particles, say, to the right and assume, for the sake ®-periodic structure with an odN, each domain being de-
simplicity, that the length of the bond does not change. Therfined by m and by a specific choice of the sign.
the increase of the potential energy for the left particle will The way of numbering of the harmonics in E¢&)—(9)
be smaller than the decrease of the energy for the right padiffers from the conventional way of numbering of the Fou-
ticle, so the total energy will decrease. However(lily the  rier harmonics. The advantage of the numbering used here is
equilibrium is stable because a similar displacement of thehat|A,|>|A,|> ... . The Fourier representation for the pe-
particles causes an increase of the potential energy. Thigodic structures given above takes into account the symme-
simple consideration suggests that, for bonds weak enouglry of the structures and thus, reduces the number of degrees
the metastable structures can exist in #femodel. The par-  of freedom.
ticles in a stable configuration are below the inflection point Even-periodic structures Eq&)—(8) have concentration
of the potential which is ati= *+1/,/3. 1/2 (fraction of particles lying in, say, left well of the on-site
The paper is organized as follows. In Sec. Il, a class of th@potentia). An odd-periodic structure Eq9) with period N
periodic solutions to thex* model is described. The solu- has concentrationN—1)/2N that approaches 1/2 with in-
tions are divided into four groups with the periods 2, 4 crease inN.
41+2, and 2+ 1, wherel is a positive integer. In Secs. lll As it is well known, theg* model withC— 0 supports an
and IV, we give some exact and approximate analytical soinfinite number of structures, periodic and chaotic. For a
lutions, respectively. In Sec. IVD, we apply the obtainedsmall C the periodic structures with concentrations different
results to the discussion of the lock-in transition. In Sec. Vfrom 1/2 are possible. For example, one can easily imagine
the existence and stability of the solutions are discussed. lthe 1/(N—1) concentration structure with all particles, ex-
Sec. VI, which concludes the paper, we briefly discuss theept eactNth particle, lying in the same well of the on-site
FK model. potential. Thus, the solutions Eq&)—(9) do not give an
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exhaustive list of periodic solutions, but, as mentioned N N/4

above, they give an exhaustive list of solutions that can ap- — >, (Up.;—Up)2= >, Ajz{l—cos{(Zj —-1)2m«k]}.

pear as a result of modulational instability in tpé model N =1 =1

with the next-nearest interaction. (14)
To describe an arbitrary periodic structure one has to con-

sider the Fourier series in a general form. For example, fo[:a

an arbitrary odd-periodic structure, E®) can be written in

the form

The averaged anharmonic term of Ed) for a givenN
n be written in the form

1 > ut=x (15)
(N=1)/2 N nT AN

Un=*Ansppt 2 Ajcod2mk(2j—1)(n+m)+e], . . . .
=1 whereXy is a function of the amplitude&; . Let us write the
(10 function Xy in an explicit form forN=4,8,12:

where the N+ 1)/2 amplitudesA; and N—1)/2 phasesp; 1

are theN parameters of the Fourier decomposition. In the X4=ZA4, (16)
present paper we restrict ourselves by the structures with

¢;=0 so it is important to demonstrate that energy of the 3 1

structure always has a local minimum at @j=0. To prove Xg== (AZ+A2)%+ = (A3A,— AAD), (17)
it, we substitute Eq(10) into the Hamiltonian Eq(1) with 8 2

the on-site potential Eq2) and average the energy over one
period (N particles. It turns out that the energy contributions
from the harmonic term& (u,; ,—Uu,)? andEuﬁ do not de-
pend on the prlasej . The phase-sensitive term is the anhar- 3
monic term_Eun. This term h_as a local extremum aj=0 4 (AZAZH AZAZ+ AZALA— A ALAD)
because it is an even function ef,. It is not difficult to 2

show that the extremum is a local minimum. For the even- 1

periodic structures the analysis is similar. + E(A?Az—AzAg)- (18

1

3
Xiz=g (AI+A?+ 7

A

Il EXACT SOLUTIONS Note that the anharmonic term is not a functionMf This

In this and in the two following sections we consider theMeans that it is same for different structures with the same
#* model. period, for example, it is same for eight-periodic structures
with «=1/8 andx= 3/8. This will be also true for the anhar-
monic terms of structures with period$-#42 and 2+1.

Particularly, for the four-periodic structuréi(=1,N=4)

Substituting Eq(6) into Eq. (1) one can express the en- the energy density, in view of Eqél3)—(16), has the form
ergy density of the two-periodic structure as

A. Two-periodic structure

2
1 = 1——A2) . (19
U,=2CA%+ Z(l—AZ)Z. (11) 2 '

The minimum energy condition is satisfied at
From the conditiordU,/dA=0 the following nontrivial so-

lution for amplitude can be found A§:2—4C, (20
A’=1-4C, (12 which is possible foC<1/2. In view of Eq.(20), the energy

density of the four-periodic structure can be writtenlas

and hencelJ,=2C—4C2. The solution exists fo€<1/4 =C-C?. The four-periodic structure is stable whed

and it is stable folC<1/6. At C=1/6, the absolute value of <1/3. At C=1/3, the absolute value of the displacement is
displacemeniu,|=A=1/y/3, which is the abscissa of the equal to|u,|=1/\/3, which is the abscissa of the inflection

inflection point of the double well potential. point of the double well potential.
B. Structures with period 41 C. Structures with period 41+2
For the displacements,, given by Eq.(7) we calculate For the displacements,, given by Eq.(8) we calculate
the terms of the Hamiltonian Eql) averaged within one the terms of the Hamiltonian Ed1l) averaged within one
period period
1 1 N/4 1 N (N/2—-1)/2
N2 Un=s 2 AT (13 N2, =Rty 2 AL (@D
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1 N D. Structures with period 21+1
2
N nzl (Up+17=Up) For the displacements,, given by Eq.(9) we calculate
the terms of the Hamiltonian Eql) averaged within one
(N2-1)12 period
= 4Ryt 2 A{1-cod(2j—1)2mk]}, )
=1 1 1 (N=DR2 ,
2_ p2
(22) N n§=:1 Un=An+ et 5 J_Zl A7, (30
1 1 N (N+1)/2
N 2 Un=Xn, 29 T3 (Up-up?= > AN1-cog(2j—1)2mkl},
n=1 N =1 =1
(3D
whereXy is a function of the amplitudes; . Particularly, for
N=6,10,14, 1 4
S 2 up=Xy, (32
3 N =1
Xg= gA‘1‘+ A3+ A3A,+3A2A5, 24 i
X3=Xe, Xs=Xi0, X7=Xy4, (33

— 3 4 4 4 3 2p2 1 3 3
X10=g (A1t Ag) T Ast S AT 5 (A2 AAY) whereXg,X10,X14 are given by Eqs24)—(26). Note that the
averaged terma2 andu? for the (2 +1)-periodic structure
coincide with that for the (K4+ 2)-periodic structure. This is

not surprising because these structures can be obtained one
from another by changing the sign of displacements for each
odd (or even node[17].

Density of potential energy of the three-periodic structure

+3A(AT+ AL+ 3A5(AZA,+ALAY), (25)

3 3
X14=g (AT+AG+A) + AL+ S (ATASHATATHASAS)

1 = = i
+ 5 (AJAHALATHATA,) (M=1,N=3)is
U 1+ 3C 1)A2 1AZ
3 3:— — — — —_——
+ 5 (A3 AAG+ALAZA; +AAAY) 414 4t 2
2 2 2 1/3 4 4 3 272
+3A4(A1A2+A1A3+A2A3+ 2A1A2A3) +Z §A1+A2+A1A2+3A1A2 . (34)
2/p2 2 2
T3AYATTAZTAY). (26) The energy has minimum at
In view of Egs.(21)—(24), the energy density of the six- 4—12C
periodic structure M =1, N=6) is Ai=7yA;,, A=———, (35
3y°+6y+12
1 C 1 1 .
UG:Z+ Z(Ai+ gAg)_ZAi_ EA% wherey<—1 is a real root of
3 (1-3C)»*+3(1-6C)y>*—6y—4(2+3C)=0. (36)
+o| AT+ AS+HASA,+3AZAZ) . (27 .
418 It can be seen from E@35) that the three-periodic structure
does not exist foilC>1/3. Actually, the solution exists for
The minimum energy conditions are satisfied at C<C*, whereC*~0.135 is such that the discriminant of
the cubic Eq.(36) equals to zero and the two real roots
4(1-C) merge together.
Mo A e P
Y oY IV. APPROXIMATE SOLUTIONS
wherey<—1 is a real root of A. Limit of C—0

5 5 At C—0 the displacements of particleg— =1 and the
(1-C)y’+3(1+2C)y°—6(1-4C)y—4(2-11C)=0. amplitudes of harmonics in Eq&)—(9) approach the values
(29) A} given below.

. i o ) For the two-periodic structure
From Eq.(28) it follows that the six-periodic solution does

not exist forC>1. A=1. (37
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For the even-periodic structures with the peridet 41 (I SR
is a positive integer g .
4 £ '
. <
Ao=(~1) 1+, j=1,...N4, (39 = 4
" <
where V?
N/2 . S A;
[(2j—1)27k ] c¥
S=2 si N : (39 0 02 04 06 08 1
k=1 C [arb. units]

FIG. 2. Amplitudes of Fourier harmonics for the six-periodic
structure as a function of. The exact solution is shown by the
thick solid lines. SmallC approximation Eq(45) is shown by the
open circles and the solid circles show the small amplitude approxi-
mation Eq.(46). The solution does not exist fd>1. The six-
periodic solution is unstable fa2>C* =0.520. The stability crite-

For the even-periodic structures with the periNg-4l
+2

1,...(N/2+1)/2, (40)

4 _
AP=(—1)lp N\/l+Sj7, j

whereS; is given by Eq.(39) and

pi=1 for j#(N/2+1)/2,

(41)

Pi=5 for j=(N/2+1)/2.

For the odd-periodic structures with=2I+1 the ampli-
tudes are

0 TSN P
Al=(=DloigVz+Sh

1,...(N+1)/2, (42

where
(N-1)/2 .
2j—1)27k
Si= > Sin[u}, (43)
k=1 N
and
pj=1 for j#(N+1)/2,
(44)
Pi=>% for j=(N+1)/2.

The amplitudesA? given above can be used as a zero
approximation for the construction of the approximate solu-

tions at a smalC. For example, for the six-periodic structure
(k=1/6), from Eq.(40) one findsA=4/3 andAS=—1/3.
Then, for a smallC, one can find the following estimation

A1:4/3+a1, A2:_1/3_a1/2+a2,
—b++b%Z—4ac 21a%+24a,C+12a,+ 16C
= 2a AT T g, r48C 124
(45)

where a=33C+24, b=12C?+42C+12, c=16C%+8C,

and we assumed; <1 anda,<a;.
For the case of a larg€ the exact solution given by Eg.

(28) can be simplified assuming thaj<1 andA,<A;. The
result reads

ria Egs. (59) and (60) give the estimationsC* =0.567 andC*
=0.550, respectively.

3 1 7 11
A=\ —z(2C-1)+ \/ =C?*--C+ —,
2 3 37 12
(46)
— A3
Ap=————.
16C—4+6A7

In the succeeding section a similar two-harmonic approxima-
tion will be given for structures with any exceptk=0,1/2,
1/3,1/4,1/6.

In Fig. 2 we compare the exact solution for the six-
periodic structure Eq(28) with the approximate solutions.
The exact result is shown by the solid lines, sn@dpproxi-
mation Eq.(45) is shown by the open circles and the solid
circles show the small amplitude approximation E46).
The solution does not exist fa€>1, which is consistent
with Eq. (57). We found numerically the stability limit for
the six-periodic solution a&* =0.520. The approximate sta-
bility criterion Eq. (59) gives an estimatioit* =0.567 and

Eq. (60) givesC* =0.550.

B. Two-harmonic approximation

If the displacements are small, the higher order harmonics
can be neglected in Eq§7)—(9). Under the assumptioA;
<1 andA,<Aq, the following two-harmonic approximation
can be easily determined

u,=A;cod2mnk+¢)+A,cod6mnk+3¢). (47)

Substituting Eq(47) into the Hamiltonian Eq(1) and aver-
aging over a periodN nodes, gives the energy density

1 A?  A3A, 3A%A2
_= 2 2 1 172 172
U= taAitBAH o5+ —¢ g
f o1 111 48
or k# '5’5’2'6’( )
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with
. 1 . 1
a=C sirt(mk)— 7 B=C SirP(3mk) — 7 (49

The energy Eq(48) has minimum at

8 8 20
A1= —g(2a+ﬂ)+g (2a+,8)2—§a,3,

A
168+6A2°

A, (50

The phase of the solution E47) cannot be determined
without taking into account the higher harmonics. To make

the approximation Eq47) consistent with Eqs(7)—(9), we
put

PHYSICAL REVIEW E64 036202

[arb. units]
~
=¥
p—g

Uy
l\o
1

[arb. units]

o
e
1

Up, Ug
= o
5 ==
=
S
1 1

0 1 I \ 1 \.\\ ]
) 0.1 0.2 0.3 0.4

C [arb. units]
T
o= N’ for N=4l, FIG. 3. (a) Kink at a smallC. We assume that only two particles
from each side of the kink have displacements different froth.
B (51) (b) Numerically obtainedi, andu; as functions ofC are shown by
¢=0, forotherN. the solid lines. Approximate solution E@52) is shown by the

dashed lines.
Note that Eqs(48)—(50) are valid for anyx exceptx o o

=0,1/2,1/3,1/4,1/6. For these exceptional cases the exact so-

. . . . . D. Domain wall in two-periodic structure—Autowaves
lutions were given in Sec. Ill. An approximate two-harmonic ) ] o
solution for the structure witlk=1/6 is given by Eq(46). There are two different domains of the two-periodic struc-

Equation(47) is accurate only for small amplitudes. How- ture. In one domain the even nodes have positive displace-
ever, this solution will be used for rough estimations in thements and in another domain so do the odd nodes. In Fig.
numerical investigation. We will also use this solution for 4(&), the domain wall separating two domains is presented.

discussion of the existence condition for various periodicAssuming that only two particles from each side of the do-
structures. main wall have displacements different frabhA, whereA is

given by Eq.(12), and taking into account the symmetry, one
can find forug andu, the following approximation:

— b+ b2+ 24A2C
6A :

C. Kink at a small C

Let us consider the kink, which is the transition of par-
ticles from one well of the on-site potential to another one, as
it is shown in Fig. 8a). For C small enough, one can assume
that only two particles from each side of the kink have dis-
placements different front 1. Taking into account the sym- U=
metry, there are two unknown displacementsandu,. Un-
der the assumption1uy<1 and 1-u;<<1-—ug, we find

UO:A+

(54)

—A —A),

+5-10c (Yo

where b=(4—42C+109C?)/(2—10C) and we assumed
2C C Uo—A<1 andu;+A<ug—A. The energy of the domain

3 up=1- (1=Uo), wall is

2_
b 2+C

U0=1—b+

(52)

2 1 22, L 2)2 2 2

whereb=(2+4C+C?)/(6+3C). UDWZE(J—_UO) +§(1—ul) +C(u;—Ug)“+C(u;—A)
The energy of the kink is

—10CA%—(1—-A?)?, (55

1 1
U=5(1-ug)?+ 5 (1-up)?

2 2 which is the difference between energy of the structure hav-
ing a domain wall and the energy of the ideal two-periodic

structure.
Domain wall in the two-periodic structure is stable if

+C(3ud+2u2—2ugu; —2u; +1). (53
In Fig. 3(b), the numerically obtained magnitudes fay
andu; (solid lineg are compared with the approximate so-

lution Eq. (52) (dashed lines 3u?+2C—-1>0.

(56)
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2 L U S S S AL 1+ t=0
‘g a |
; A """""""""""""""""" A(’)" ::0
5 / \
0 aF
YA BAA
] P rf OWNMWW
-1_ L ) ) N . | 2 2 n 1 i
3 0 5 A
n 1 t=200
z 3 &
El (b) =
<
=1
7]
bE 0
S
" N
2| Upw
- 7] 7
$ e o o
-5 0.1 0.2 FIG. 5. The unstable domain wall initializes the two autowaves
C [arb. units] moving in the opposite directions and transforming the two-periodic

_ _ o structure into the ground statg,=1 (C=0.15). We introduced a
FIG. 4. () The domain wall in the two-periodic structure. We strong dissipation in the system. In spite of the dissipation, the
assume that only two particles from each side of the domain walhutowaves move with a constant velocity. The driving force for this

have displacements different fromA. (b) Numerically found dis-  motion comes from the energy delivered in the structure transfor-
placementsiy, andu, are plotted by the solid lines and the approxi- mation.

mate solution Eq(54) is shown by the dashed lines. For the dis-
placementu, curves overlap each other. Fag the deviation is
noticeable only at the stability limit of the domain wall, which is at

. o e N .
Cow=0.147, The stability limit for two p.e”c’d'c structure @? In the above example, the transformation of the two-
=1/6~0.167. LineS shows the left-hand side of E(6), which is . . .

S X . periodic structure into the ground state was studied. How-

the stability criterion for the domain wall py is the energy of the
domain wall. ever, the same effect can be observed for other metastable

periodic structures. Domain walls in any structure, except the

This approximate stability criterion can be derived consider{WO-Periodic one, are of two types. One type of domain wall
ing the change in the energy of domain wall due to a smallS formed by removal of a node of the chain and another type

driving force for this motion comes from the energy deliv-
ered in the structure transformation.

perturbation ofu, andu,. is formed by adding of a node. The critical conditions for the
The results of numerical study of the domain wall aredomain walls of different types are different.
presented in Fig. @). Numerically found displacements, In our opinion, the loss of stability by a modulated meta-

and u; are plotted by the solid lines and the approximateStable structure described above and illustrated in Fig. 5, can
solution Eq.(54) is shown by the dashed lines. For the dis- be regardedhas a r;]echamzm ofbthe IocI;]—ln tranh5|t|9n. By
placemenu, curves overlap each other. Foy the deviation contrast to the mechanism described 43, the mechanism

is noticeable only at the stability limit of the domain wall, proposed here can work for the case of NaNG well.

which is at C§,,=0.147. Note that the stability limit for

two-periodic structure i€3 = 1/6~0.167. The line labele§ V. EXISTENCE AND STABILITY
shows the left-hand side of E¢56), which is the stability . . , .
criterion for the domain wall. One can see tiS#pproaches Let us determine the existence region for a structure with

zero wherC approache€?,, . We also plot the energy of the any . At the exi_stence limit, _the displa_lcement_s are nearly
domain wallUp,y,. Note thatUp,y is always negative there- Zero and even smgle-harmqnlc approximation is valid. .P.Ut'
fore, the domain wall can be viewed as a nucleus of thdiNd A2=0 in Eq. (48), one finds that the energy has mini-
lowest energy phase. mum atA;=4\— a/3, whlch_ is cqrrect for any exceptx
The two-periodic structure with a domain wall shows an = 0,1/2,1/4. Thus, the solution with the wave numkeex-
interesting behavior & lying betweerC%,, andC% . In this  IStS Whena<0, or
case the two-periodic structure is stable but the domain wall
is unstable. The unstable domain wall initializes the two au- 1
towaves moving in the opposite directions and transforming
the two-periodic structure into the ground statg=1. This
process is presented in Fig. 5@&# 0.15. For this simulation,
we added the dissipative term with the coefficient equal tdn spite of the fact that the estimation f8g is not valid for
unity to the equation of motion E@4). In spite of the dissi- «=0,1/2,1/4, Eq(57) is correct even for these exceptional
pation, the autowaves move with a constant velocity. Thecases.

C<——. 5
<4 sirf( k) ®7)
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Equation(57) suggests that the structures with a small by Eqgs. (6)—(9). The properties of the solutions are very
exist in a wide range of paramet€r while the short periodic  similar for both of these models. The only important differ-
structures exist only in a highly discrete chagmall C). ence between them is that in the FK model the particles can

Let u® be a knowrlN-periodic equilibrium solution to Eq.  occupy more than two wells of the on-site potential. How-
(4). To examine it for stability one can study the time evo-ever, here we will not discuss this general case.
lution of a small perturbation,(t) = uﬂ+sn(t). The solution The curvature of the FK on-site potential at the top of the
u® is stable if the dispersion relation of the linearized equaPotential barrier coincides with that for te potential. That
tion of motion for the functiore(t) has no imaginary fre- IS Why the existence condition E@57) is true for either

quencies. However, this approach allows to check for stabilModel: 0. o - _
ity only the simplest structures. Let up+ 7 is a periodic equilibrium solution to the FK

To simplify the problem, let us assume that perturbation ignodel. The shift byr means that we consider the displace-
a constant. Substituting,=u’+ ¢ into the Hamiltonian Eq. Ments with respect to the top of the potentlaI.OConS|der|ng
(1), we calculate the variation of energy due to the perturbathe perturbation in the form of a constant,=u,+ 7+,

tion and average the energy over one peribdnodes we find that the solution cannot be stable if
N N
e - 0
MU= 55 2 [Be(up)®—e+2(uD=ugl, (59 N &4 COSUn)=0. (61

Thus, we have described a class of periodic equilibrium
solutions to thep? and FK models. They are also the solu-
tions to thee* model with the next-nearest interactions and,
Sequentially, to the DIFFOUR and EHM models. In ta&
model the amplitude of a stable solution is large, while in the
»* model with the next-nearest interaction the solutions with

N 1 vanishingly small amplitude can be stable. The described
2 (u2)2<—. (59 class of solutions is an exhaustive list of periodic structures
n=1 3 that can appear as a result of modulational instability in the
©* model with the next-nearest interaction.

The solutions with a small wave number are stable in a
- oo : wide range of the paramet&, while the solutions with a
The stability criterion Eq(59) suggests that the displace- large wave number can be stable only in a highly discrete

ments in a stable structure are large. . . ;
A more precise stability criterion can be obtained underchams (small C). The described solutions are metastable,

the assumption that the perturbation is proportional to th%?;em;?;sigilgagsu(g:rg.i'r?tcr)n?hr%rzidmsc;;gaa\r:ngrgi]saéfsnse d
shape of the on-site potentia}=ul+[1— (u%)?]%. Similar 9 '

calculations show that the structure cannot be stable if The transformation occurs by means _of.motlon c.)f a pair of
autowaves. The autowaves can be initialized, for instance, by
N an unstable domain wall.
2 [C(Vg+1—vg)2+ (Vﬂ)z[s(uﬂ)z— 1]]1<0, (60) The effect of instability of a metastable periodic structure
n=1 gives a qualitative description of the lock-in transition when
modulated phase in a dielectric crystal transforms to a low-
symmetry commensurate phase.

where we omitted the higher order termseinThe stability
condition isd?(AU)/de2>0. However, assuming a constant
perturbation we overestimated the stability of the system
Thus, we can claim that a structure with the wave number
cannot be stable if

Z| -

Obviously, the found stability condition is accurate for the
structures withw=1/2 and 1/4.

Z| -

where V2=[1—(u?)?]2. This criterion is accurate for the
structures withk=1/2, 1/3, and 1/4.
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